skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sun, Yujie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 28, 2026
  2. Free, publicly-accessible full text available June 18, 2026
  3. Abstract Electrochemical valorization of biomass represents an emerging research frontier, capitalizing on renewable feedstocks to mitigate carbon emissions. Traditional electrochemical approaches often suffer from energy inefficiencies due to the requirement of a second electrochemical conversion at the counter electrode which might generate non‐value‐added byproducts. This review article presents the advancement of paired electrocatalysis as an alternative strategy, wherein both half‐reactions in an electrochemical cell are harnessed to concurrently produce value‐added chemicals from biomass‐derived feedstocks, potentially doubling the Faradaic efficiency of the whole process. The operational principles and advantages of different cell configurations, including 1‐compartment undivided cells, H‐type cells, and flow cells, in the context of paired electrolysis are introduced and compared, followed by the analysis of various catalytic strategies, from catalyst‐free systems to sophisticated homogeneous and heterogeneous electrocatalysts, tailored for optimized performance. Key substrates, such as CO2, 5‐hydroxymethylfurfural (HMF), furfural, glycerol, and lignin are highlighted to demonstrate the versatility and efficacy of paired electrocatalysis. This work aims to provide a clear understanding of why and how both cathode and anode reactions can be effectively utilized in electrocatalytic biomass valorization leading to innovative industrial scalability. 
    more » « less
    Free, publicly-accessible full text available April 14, 2026
  4. In recent years, ZnIn2S4 (ZIS) has garnered attention as a promising photocatalyst due to its attractive properties. However, its performance is hindered by its restricted range of visible light absorption and the rapid recombination of photoinduced holes and electrons. Single-atom co-catalysts (SACs) can improve photocatalytic activity by providing highly active sites for reactions, enhancing charge separation efficiency, and reducing the recombination rate of photo-generated carriers. In this work, we perform high-throughput density functional theory (DFT) computations to search for SACs in ZIS encompassing 3d, 4d, and 5d transition metals as well as lanthanides, considering both substitutional and interstitial sites. For a total of 172 SACs, defect formation energy (DFE) is computed as a function of chemical potential, charge, and Fermi level (EF), leading to the identification of low energy dopants and their corresponding shallow or deep defect levels. Statistical data analysis shows that DFE is highly correlated with the difference in electron affinity between the host (Zn/In/S) atom and the SAC, followed by the electronegativity and boiling point. Among the 60 lowest energy SACs, Co_In, Yb_i, Tc_Zn, Au_S, La_i, Eu_i, Au_i, Ta_In, Hf_In, Zr_In, and Ni_Zn lead to a lowering of the Gibbs free energy for hydrogen evolution reaction, improving upon previous ZIS results. The computational dataset and insights from this work promise to accelerate the experimental design of novel dopants in ZIS with optimized properties for photocatalysis and environmental remediation. 
    more » « less
  5. Free, publicly-accessible full text available June 8, 2026